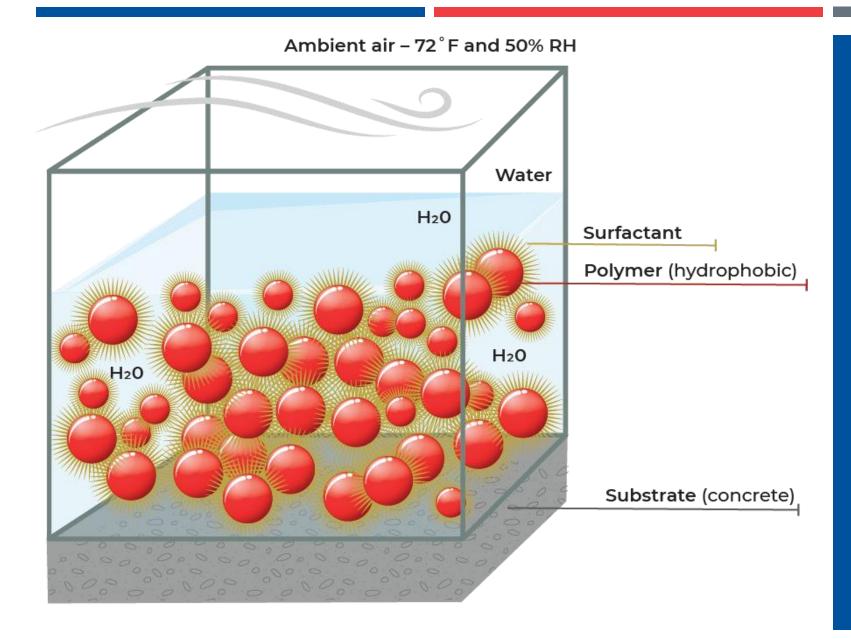
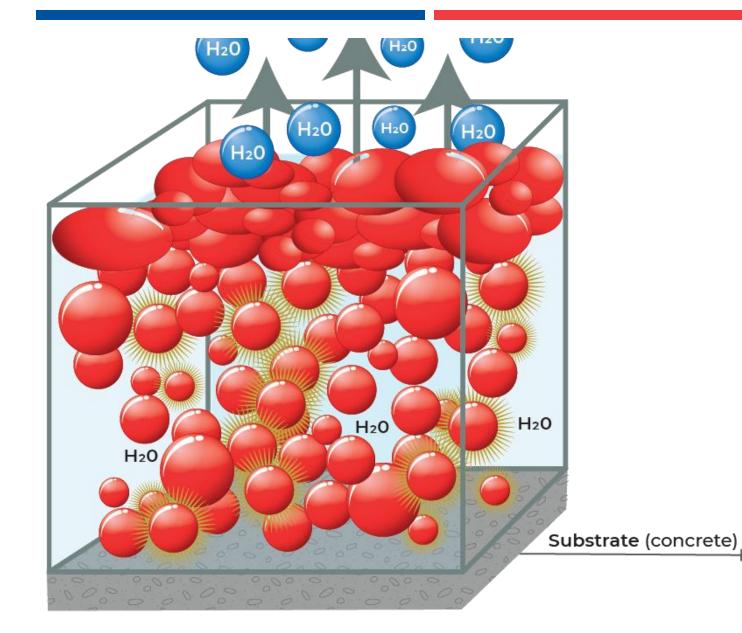
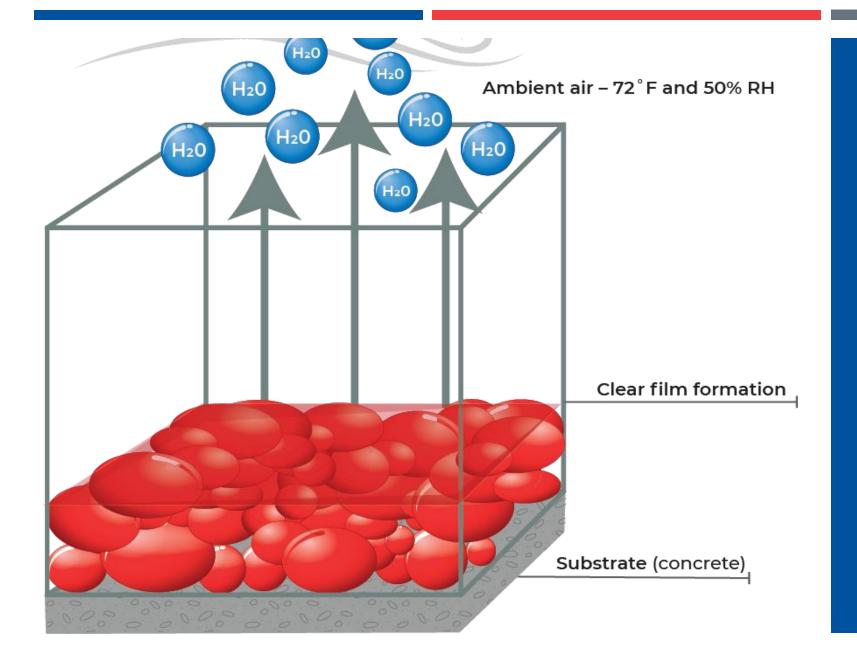
# HOW DO HIGH MOISTURE RESISTANT ADHESIVES WORK IN HIGH MOISTURE CONDITIONS AND HOW CAN THEY STILL FAIL WITH ALL THE CLAIMS MADE?

A LOOK INTO THE SCIENCE OF POLYMER COALESCENCE, CONCRETE COMPOSITION AND SALT PUMPS

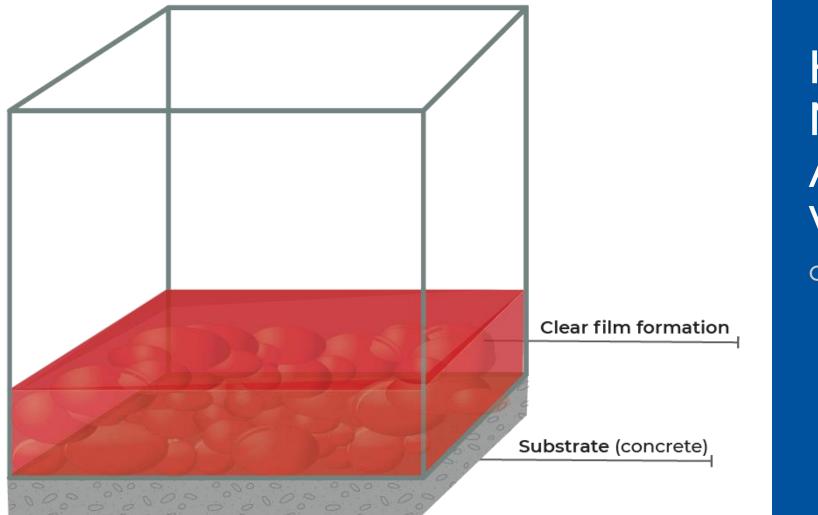



Presented by: Jeffrey B Johnson


# COURSE OBJECTIVES


- Learn about the process of coalescence and why this is important for high moisture resistant adhesives
- Discuss factors that influence high moisture resistant film formation
- Review the basic principles of pH values
- Outline concrete chemical composition and curing
- Discuss the process of carbonization.
- Discuss osmosis and how this is relative to a concrete slab
- Propose mechanism for moisture generation under flooring installations due to osmotic action
- Discuss techniques and practices to avoid moisture related failures

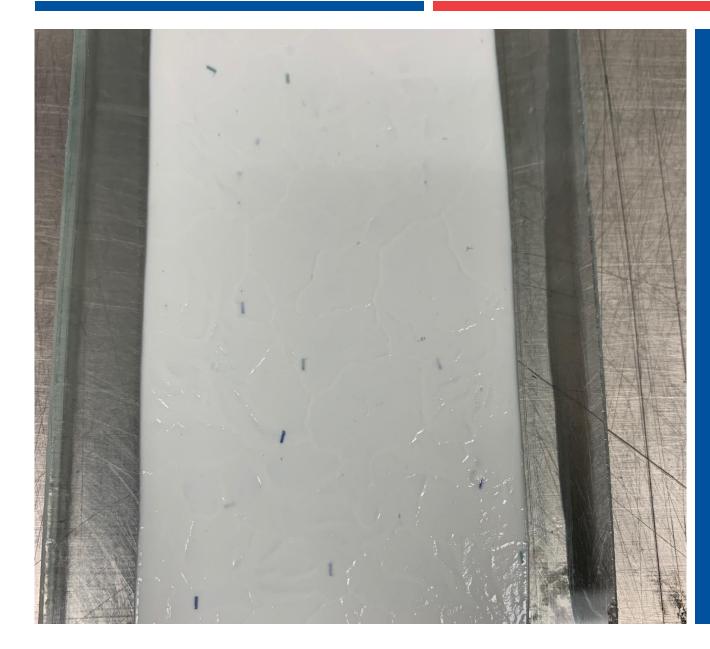





WATER-BASED ADHESIVES BEGIN WITH AN ACRYLIC LATEX POLYMER.



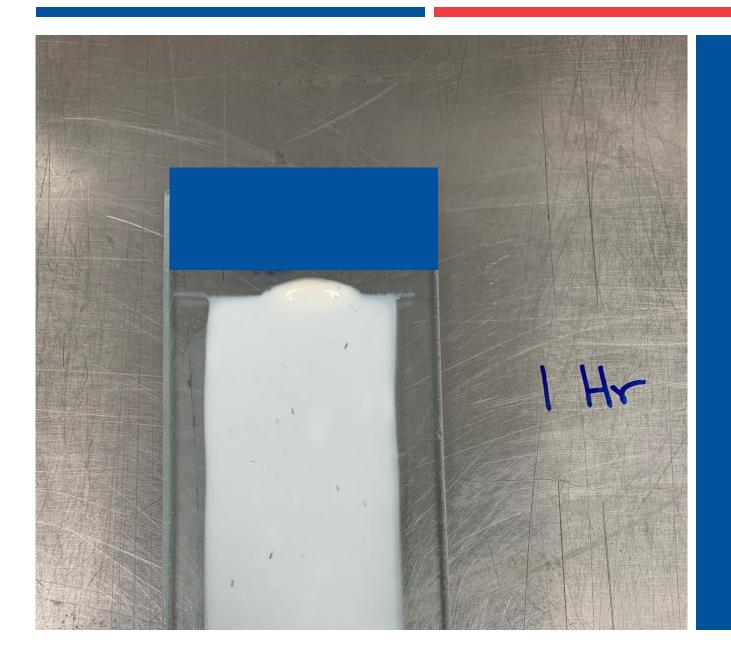



COALESCENCE



COALESCENCE




ONCE THE FILM HAS COALESCED YOU HAVE MOISTURE RESISTANCE



# THINGS THAT INTERFERE WITH COALESCENCE

TEMPERATURE

- FREEZING TEMP CREATES FILM CRAZING
- HIGH TEMP FLASH DRIES SURFACE TRAPPING MOISTURE UNDERNEATH



# THINGS THAT INTERFERE WITH COALESCENCE

MOISTURE

 MOISTURE FROM CONDENSATION (DEW POINT) DILUTES FILM AND WEAKENS PERFORMANCE

## NUMBER GENERATION

- Testing methods:
  - ASTM DI151-00
    - Standard Practice for Effect of Moisture and Temperature on Adhesive Bonds
  - Proprietary Methods
    - Immersion
    - On slab
    - In field



## ASTM DI151-00

#### I. Scope

I.I This practice defines conditions for determining the performance of adhesive bonds when subjected to continuous exposure at specified conditions of moisture and temperature. The performance is expressed as a percentage based on the ratio of strength retained after exposure to the original strength.

I.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.



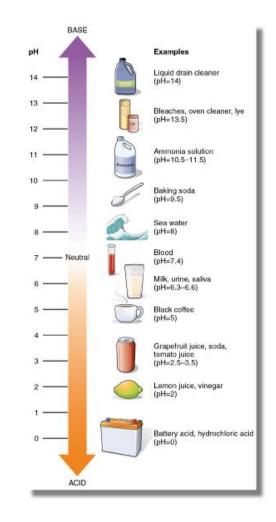
## ASTM F-1151 – TEST CONDITIONS

- Substrate and adherend specified by adhesive selection
- Flooring adhesives typically tested on cement boards that are conditioned to the requisite RH levels
- Adhesives allowed to cure at high RH and then bonded

| TABLE 1 Standard Test Exposures |      |                      |                                |  |  |  |
|---------------------------------|------|----------------------|--------------------------------|--|--|--|
| Test Exposure                   | Temp | erature <sup>A</sup> |                                |  |  |  |
| Number                          | °C   | °F                   | Moisture Conditions            |  |  |  |
| 1                               | -57  | -70                  | as conditioned                 |  |  |  |
| 2                               | -34  | -30                  | as conditioned                 |  |  |  |
| 3                               | -34  | -30                  | presoaked <sup>B</sup>         |  |  |  |
| 4                               | 0    | 32                   | as conditioned                 |  |  |  |
| 5                               | 23   | 73.4                 | 50 % RH                        |  |  |  |
| 6                               | 23   | 73.4                 | immersed in water              |  |  |  |
| 7 8                             | 38   | 100                  | 88 % RH                        |  |  |  |
| 8                               | 63   | 145                  | oven, uncontrolled             |  |  |  |
|                                 |      |                      | humidity                       |  |  |  |
| 9                               | 63   | 145                  | over water <sup>C</sup>        |  |  |  |
| 10                              | 63   | 145                  | immersed in water              |  |  |  |
| 11                              | 70   | 158                  | oven, uncontrolled<br>humidity |  |  |  |
| 12                              | 70   | 158                  | over water <sup>C</sup>        |  |  |  |
| 13                              | 82   | 180                  | oven, uncontrolled             |  |  |  |
| 10                              | 02   |                      | humidity                       |  |  |  |
| 14                              | 87   | 188                  | oven, uncontrolled<br>humidity |  |  |  |
| 15                              | 82   | 180                  | over water <sup>C</sup>        |  |  |  |
| 16                              | 100  | 212                  | oven, uncontrolled<br>humidity |  |  |  |
| 17                              | 100  | 212                  | immersed in water              |  |  |  |
| 18                              | 105  | 221                  | oven, uncontrolled             |  |  |  |
|                                 |      |                      | humidity                       |  |  |  |
| 19                              | 149  | 300                  | oven, uncontrolled<br>humidity |  |  |  |
| 20                              | 204  | 400                  | oven, uncontrolled<br>humidity |  |  |  |
| 21                              | 260  | 500                  | oven, uncontrolled<br>humidity |  |  |  |
| 22                              | 316  | 600                  | oven, uncontrolled<br>humidity |  |  |  |

<sup>A</sup> The tolerance for test temperature shall be ±1°C or 1.8°F up to 82°C or 180°F, and ±1% for temperatures above 82°C or 180°F. <sup>B</sup> Presoaking shall consist of submerging specimens in water and applying vacuum at 51 cm (20 in.) of mercury until weight equilibrium is reached. <sup>C</sup> The relative humidity will ordinarily be 95 to 100%.




## QUESTION

• Are we really dealing with "pure" water?

#### THINGS THAT INTERFERE WITH COALESCENCE

#### PH

- PH is a measure of how acidic/basic water is. The range goes from 0 to 14, with 7 being neutral. pH's of less than 7 indicate acidity, whereas a pH of greater than 7 indicates a base.
- pH measurement is a logarithmic scale.



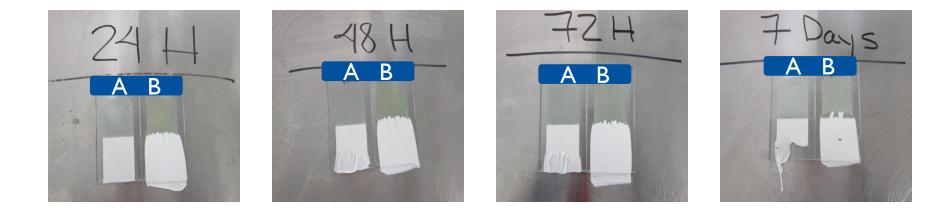
#### LAB TESTING OF MOISTURE RESISTANCE OF ADHESIVES

- PH Resistance
  - Water immersion testing

| 90-100<br>85-89<br>70-84 |
|--------------------------|
| 70-84                    |
|                          |
|                          |
| 65-69                    |
| 50-64                    |
| 45-49                    |
| 30-44                    |
| 25-29                    |
| 0-24                     |
|                          |

| _ |          |                      |           |
|---|----------|----------------------|-----------|
|   | Symbol   | Failure              | Weighting |
| _ | W(1-3)   | Whitening            | 1%        |
|   | B(1-3)   | Bubbling             | 16.00%    |
| _ | FW(1-3)  | Weak Film            | 26.00%    |
|   | SW(1-3)  | Swelling             | 16.00%    |
| - | DL(3)    | Delamination         | 10.00%    |
| _ | PDL(1-3) | Partial Delamination | 4.00%     |
|   | AC(1-3)  | Adhesive Curling     | 5.00%     |
|   | MB(1-3)  | Minor Bubbling       | 5.00%     |
|   | MFW(1-3) | Minor Weak Film      | 12.00%    |
|   | MSW(1-3) | Minor Swelling       | 5.00%     |
|   |          |                      |           |

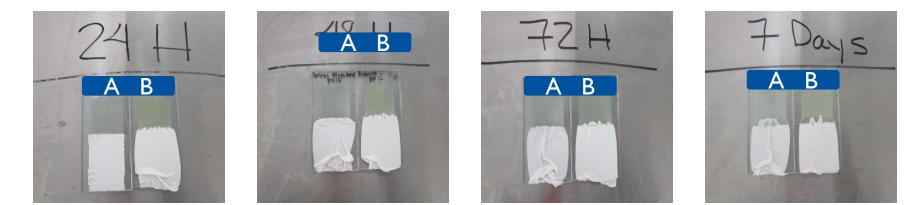



### THINGS THAT INTERFERE WITH COALESCENCE



| pH 7       |          |   |        |                    |  |  |  |
|------------|----------|---|--------|--------------------|--|--|--|
|            | Comments |   |        |                    |  |  |  |
| Adhesive A | 24Hrs    | 5 | 99.00% | W(3)               |  |  |  |
| Adhesive B | 24Hrs    | 3 | 57.00% | W(3)DL(3)SW(3)B(3) |  |  |  |
| Adhesive A | 48 Hrs   | 5 | 94.66% | W(3)PDL(2)MSW(1)   |  |  |  |
| Adhesive B | 48 Hrs   | 3 | 57.00% | W(3)DL(3)SW(3)B(3) |  |  |  |
| Adhesive A | 72 Hrs   | 5 | 94.66% | W(3)PDL(2)MSW(1)   |  |  |  |
| Adhesive B | 72 Hrs   | 3 | 57.00% | W(3)DL(3)SW(3)B(3) |  |  |  |
| Adhesive A | 7 Days   | 5 | 91.33% | W(3)PDL(2)MSW(3)   |  |  |  |
| Adhesive B | 7 Days   | 3 | 57.00% | W(3)DL(3)SW(3)B(3) |  |  |  |




### THINGS THAT INTERFERE WITH COALESCENCE



| pH 10      |        |        |          |                          |  |  |  |
|------------|--------|--------|----------|--------------------------|--|--|--|
|            | Time   | Rating | % Rating | Comments                 |  |  |  |
| Adhesive A | 24Hrs  | 5      | 99.00%   | ₩(3)                     |  |  |  |
| Adhesive B | 24Hrs  | 3      | 62.33%   | W(3)DL(3)SW(2)B(3)       |  |  |  |
| Adhesive A | 48 Hrs | 5      | 94.66%   | W(3)PDL(2)MSW(1)         |  |  |  |
| Adhesive B | 48 Hrs | 3      | 62.33%   | W(3)DL(3)SW(2)B(3)       |  |  |  |
| Adhesive A | 72 Hrs | 5      | 93.00%   | W(3)PDL(2)MSW(2)         |  |  |  |
| Adhesive B | 72 Hrs | 3      | 53.00%   | W(3)DL(3)SW(3)B(3)MFW(1) |  |  |  |
| Adhesive A | 7 Days | 3      | 65.00%   | W(3)PDL(2)FW(3)SW(1)     |  |  |  |
| Adhesive B | 7 Days | 3      | 53.00%   | W(3)DL(3)SW(3)B(3)MFW(1) |  |  |  |



### THINGS THAT INTERFERE WITH COALESCENCE



| pH 12                         |        |   |        |                          |  |  |  |
|-------------------------------|--------|---|--------|--------------------------|--|--|--|
| Time Rating % Rating Comments |        |   |        |                          |  |  |  |
| Adhesive A                    | 24Hrs  | 5 | 96.33% | W(3)PDL(2)               |  |  |  |
| Adhesive B                    | 24Hrs  | 3 | 51.00% | W(3)PDL(3)B(3)SW(2)FW(2) |  |  |  |
| Adhesive A                    | 48 Hrs |   | 84.33% | W(3)PDL(3)SW(2)          |  |  |  |
| Adhesive B                    | 48 Hrs | 3 | 51.00% | W(3)PDL(3)B(3)SW(2)FW(2) |  |  |  |
| Adhesive A                    | 72 Hrs |   | 79.00% | W(3)PDL(3)SW(3)          |  |  |  |
| Adhesive B                    | 72 Hrs | 2 | 42.33% | W(3)PDL(3)B(3)SW(2)FW(3) |  |  |  |
| Adhesive A                    | 7 Days | 3 | 61.00% | W(3)DL(3)SW(3)MFW(3)     |  |  |  |
| Adhesive B                    | 7 Days | 2 | 36.33% | W(3)DL(3)B(2)SW(3)FW(3)  |  |  |  |



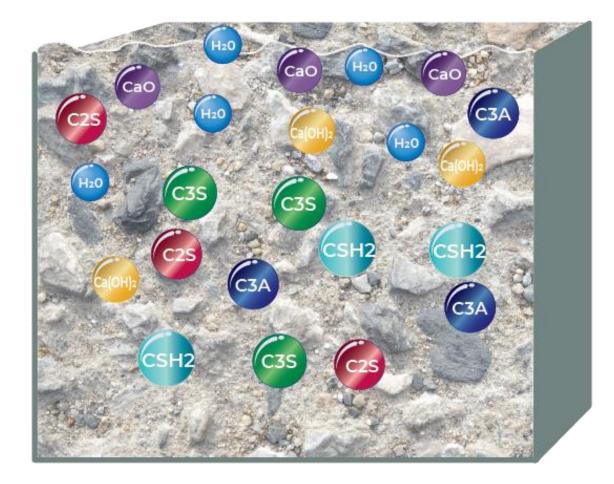
## WHERE DOES THE HIGH PH COME FROM IN CONCRETE?

- Components of dry concrete:
  - Tricalcium silicate, C3S
  - Dicalcium silicate, C2S
  - Tricalcium aluminate, C3A
  - Tetracalcium aluminoferrite, C4AF
  - Gypsum, Calcium Sulfate Dihyhdrate (CSH2)



## WHERE DOES THE HIGH PH COME FROM IN CONCRETE?

- Ettringite
  - I5 to 20%
- Calcium silicate hydrates, CSH
  - **50 to 60%**
- Calcium hydroxide (lime)
  - **20 to 25%**
- Voids
  - 5 to 6% (in the form of capillary voids and entrapped and entrained air)




### WHERE DOES THE HIGH PH COME FROM IN CONCRETE?

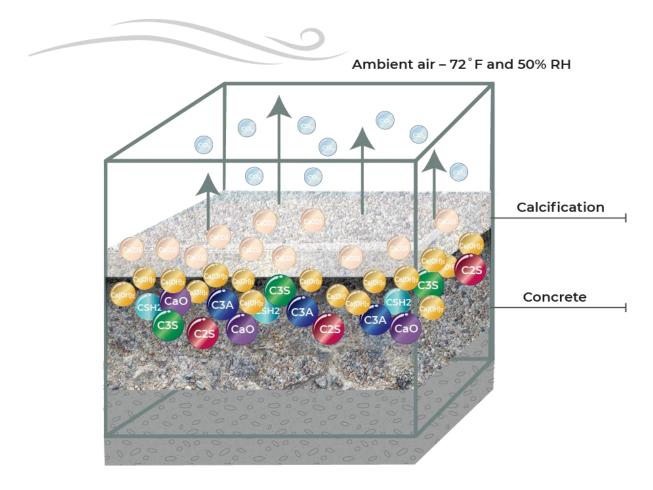
Fresh concrete has a pH of 12-14.







# CONCRETE CHEMICAL REACTIONS


Tricalcium silicate, C3S Dicalcium silicate, C2S Tricalcium aluminate, C3A Tetracalcium aluminoferrite, C4AF Gypsum, CSH2



# CHEMICAL CONCRETE REACTIONS

FINISHING THE SURFACE

STEEL TROWELING BRINGS BLEED WATER TO THE SURFACE COMPACTING AGGREGATE LEAVING FINES AT THE SURFACE



# CONCRETE CHEMICAL REACTIONS

CARBONIZATION

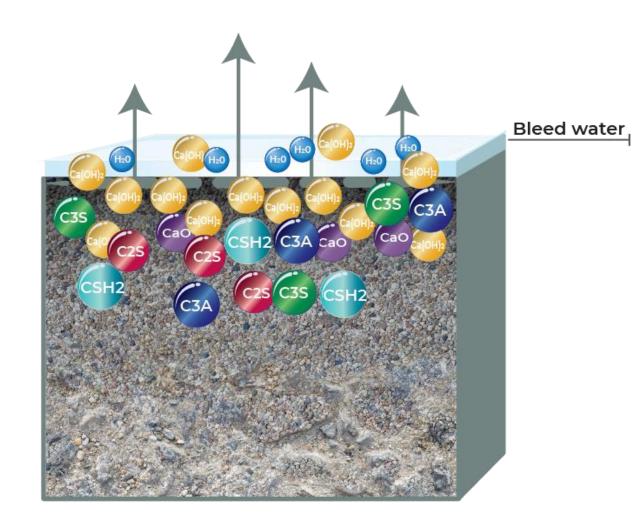
THE NORMAL REACTION OF CO2 IN THE ATMOSPHERE WITH THE CALCIUM HYDROXIDE TO CREATE CALCIUM CARBONATE AND LOWER THE PH OF THE SURFACE

# WHERE DOES THE WATER COME FROM?

• Water of hydration

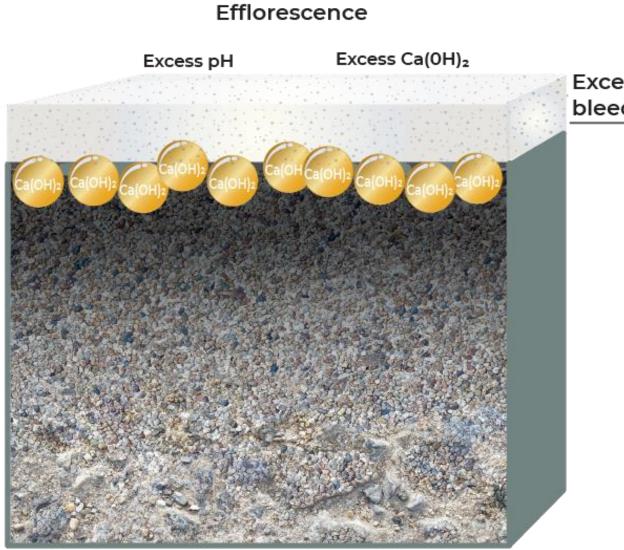


# WHERE DOES THE WATER COME FROM?


Water of convenience



# WHERE DOES THE WATER COME FROM?


• Water from ground





# WHAT IS IN BLEED WATER

MIX OF CALCIUM, SODIUM, HYDROXIDE AND SULFATE IONS



Excess bleed water

## WHAT IS EFFLORESCENCE

DEPOSITS OF CALCIUM SALTS ON THE SURFACE IN THE FORM OF WHITE CRYSTALS.

# HOW DO WE KNOW IF THE SLAB IS SALTED

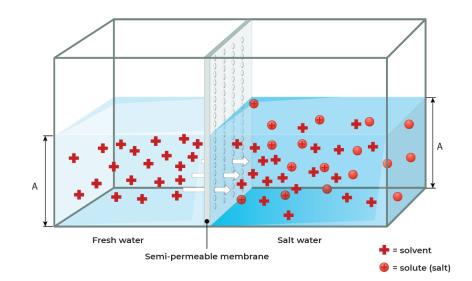
 Visual inspections do not always show signs of salt deposits

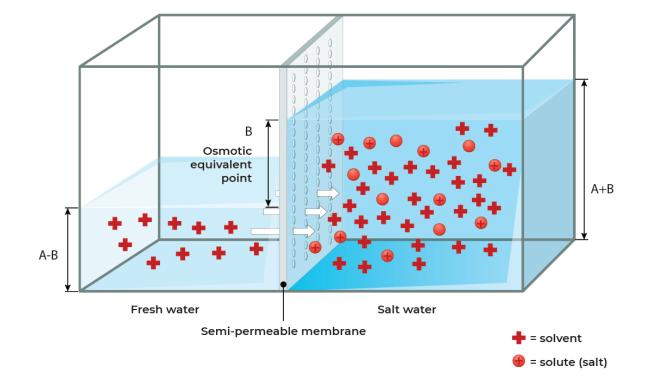


# PHTESTING

Why do we test concrete slabs for pH?




# QUESTION


- So what's all this talk about salt deposits on the surface of a concrete slab have to do with floor installation?
- Salts are hygroscopic and absorb moisture
  - Zinc chloride, sodium chloride, and sodium hydroxide crystals are hygroscopic, as are silica gel, honey, nylon, and ethanol.



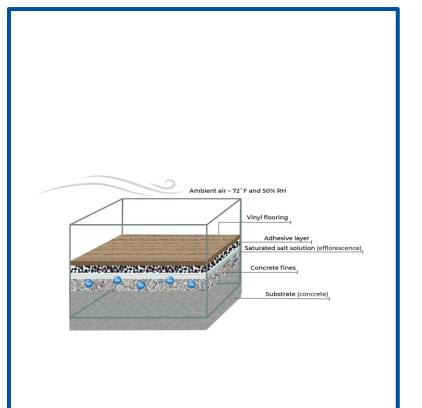
### WHAT IS OSMOSIS

A process by which molecules of a solvent tend to pass through a semipermeable membrane from a less concentrated solution into a more concentrated one, thus equalizing the concentrations on each side of the membrane





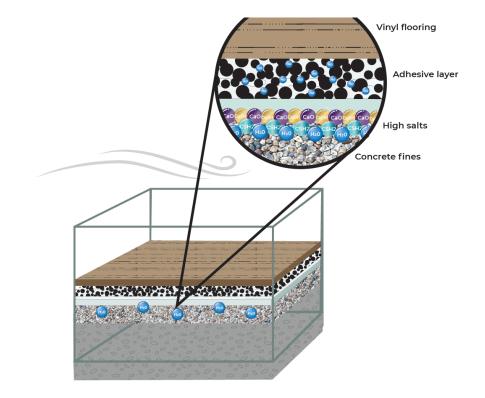
# WHAT IS OSMOSIS


SEMI PERMEABLE MEMBRANES AND HIGH SALT CONCENTRATIONS CREATE A SALT PUMP BRINGING WATER FROM ONE SIDE INTO THE AREA OF HIGH SALT CONCENTRATION.

# OSMOSIS IS USED IN DIALYSIS MACHINES

SEMI PERMEABLE MEMBRANES ALLOW FOR SPECIFIC TOXIN REMOVAL LEAVING GOOD MATERIALS BEHIND.

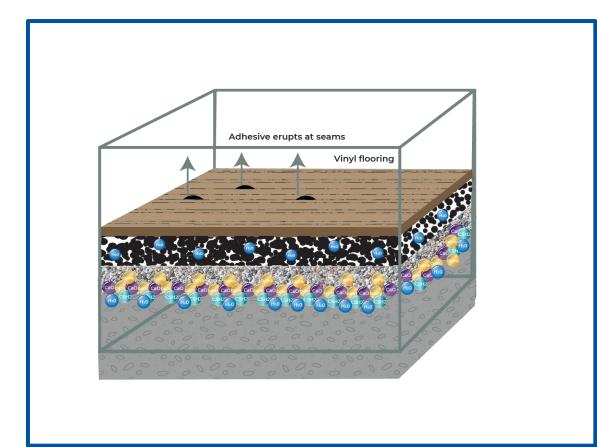



### WHAT ARE THE CAUSES OF OSMOTIC BLISTERING



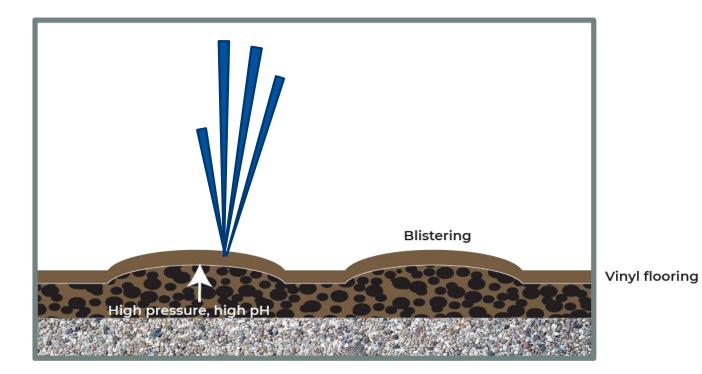
- High concentration of soluble salts on the surface create the potential for osmotic action
- Cement fines act as the semi permeable membrane
- Water is pulled from the concrete to dilute the salt concentration but since it cannot go back down into the concrete a build up of salt solution is created




### HOW DOES OSMOSIS RELATE TO RESILIENT FLOORS



- Osmotic action will only stop when the water source runs out.
- Solution created is high pH which is detrimental to adhesives and patching compounds.
- Excessive pressure can be generated due to the action of the salt pump

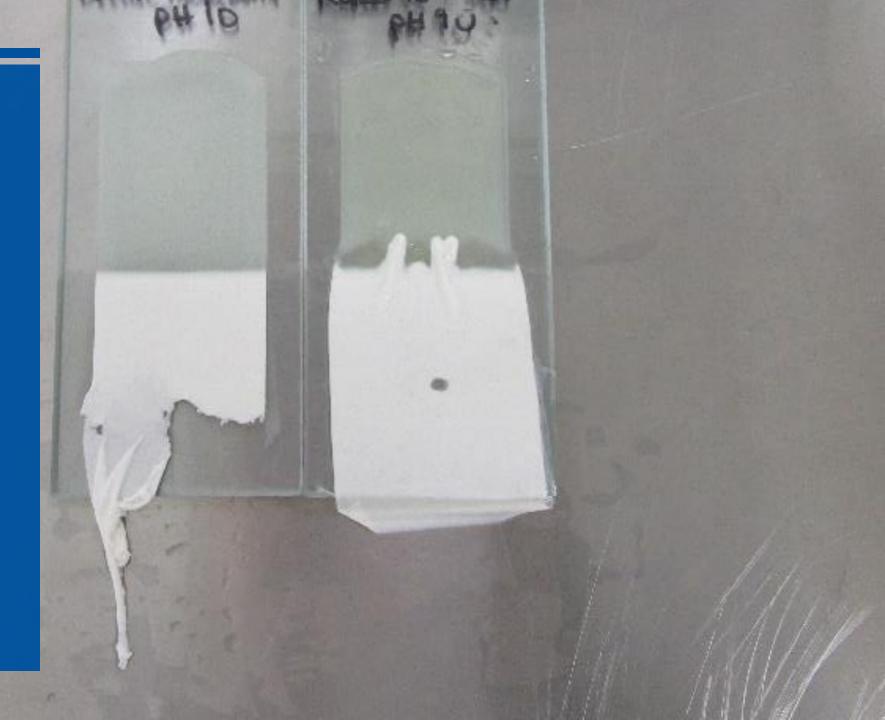


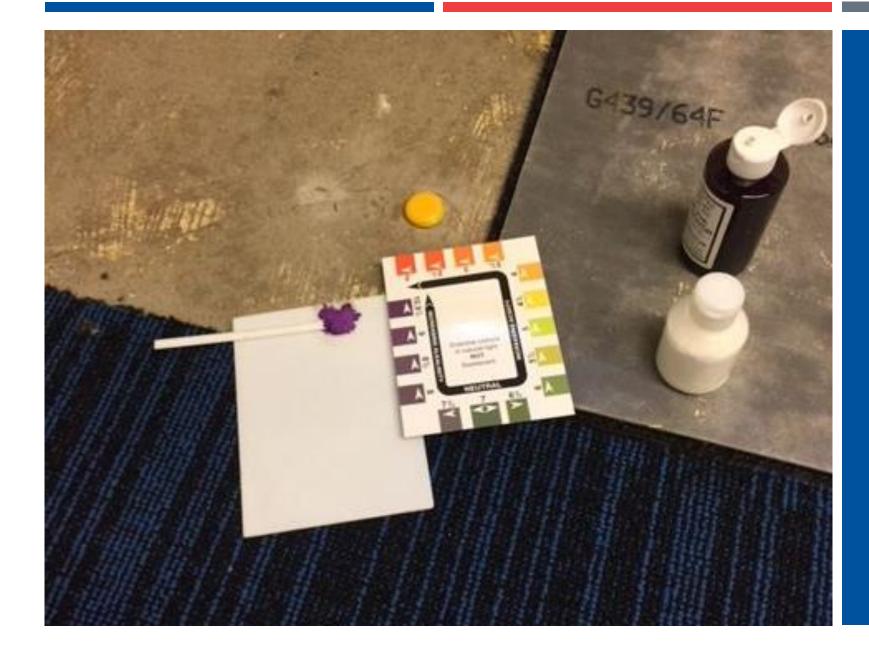

#### HOW DOES OSMOSIS RELATE TO RESILIENT FLOORS



 Liquid accumulates in the adhesive layer forcing blisters or causing liquified adhesive to ooze up through seams







HOW DOES OSMOSIS AND CONCRETE RELATE

OSMOTIC BLISTERING OCCURS UNDER EPOXY COATINGS AND RESILIENT FLOORING

# HOW DOES OSMOSIS EFFECT HIGH MOISTURE ADHESIVES?

HIGH PH CAUSES SIGNIFICANT IMPACT ON ADHESIVE INTEGRITY





# HOW TO AVOID OSMOTIC ACTIVITY

PERFORM PH TEST

## HOW TO AVOID THESE SITUATIONS

Do a pH test

 Do a petrographic analysis of the slab

#### Inorganic Surface Chemistry

| Client:   |  | MI#:    | 20212              |
|-----------|--|---------|--------------------|
| Project:  |  | P.O.#:  | N/A                |
| Location: |  | Method: | lon Chromatography |

|           |           |            | Sodium | Potassium | Chloride | Sulfate |  |
|-----------|-----------|------------|--------|-----------|----------|---------|--|
| Sample ID |           | Depth BTC* | (ppm)  |           |          |         |  |
| Core 1    | 20212–01A | 0-3 mm     | 2330   | 2520      | 70       | 3930    |  |
|           | 20212-01B | 3-6 mm     | 130    | 240       | 50       | 3030    |  |

\*BTC = Below Top Surface of the Core

#### Data Anomaly

In the presence of elevated levels of concrete relative humidity, near-surface concentrations of inorganic salts (e.g., metasilicate, chloride, and/or sulfate-rich compounds) and/or organic contaminants (e.g., oils & cleaning product residues) have the potential to adversely effect the bond integrity between the flooring system and the concrete substrate. Specialized surface preparation methods may help to diminish the influence of the surface contaminants, thereby contributing to improved adhesion of the flooring system.

#### SUMMARY

- High moisture adhesives need proper conditions in order to coalesce into final film
- Temperature, moisture and pH can affect coalescence
- High pH conditions are unavoidable on fresh concrete
- Excess bleed water creates potential for osmotic activity

- Always perform pH test
- Always understand internal concrete RH levels





#### THANK YOU FOR YOUR ATTENTION

Jeffrey B Johnson, FCIS Business & Marketing Manager

jbjohnson@mapei.com

